31/B - Final - Solutions

December 9, 2011

1. (20 points) Calculate $g(1)$ and $g^{\prime}(1)$, where $g(x)$ is the inverse of $f(x)=x+\ln x$.

Solution First we solve, $1=x+\ln x$, and we see that $x=1$. Thus, $g(1)=1$. Now, $f^{\prime}(x)=1+\frac{1}{x}$. So,

$$
g^{\prime}(1)=\frac{1}{f^{\prime}(g(1))}=\frac{1}{1+\frac{1}{g(1)}}=\frac{1}{1+\frac{1}{1}}=\frac{1}{2} .
$$

2. (20 points) Evaluate the integral

$$
\int x \sqrt{9-x^{2}} d x
$$

using trigonometric substitution.

Solution We substitute $x=3 \sin \theta$. Then, $d x=3 \cos \theta d \theta$. So, the integral becomes

$$
\begin{aligned}
\int x \sqrt{9-x^{2}} d x & =\int 3 \sin \theta \sqrt{9-9 \sin ^{2} \theta} 3 \cos \theta d \theta \\
& =27 \int \sin \theta \cos ^{2} \theta d \theta
\end{aligned}
$$

Now we substitute $u=\cos \theta$. Then, $d u=-\sin \theta d \theta$, so the integral becomes

$$
\begin{aligned}
27 \int \sin \theta \cos ^{2} \theta d \theta & =-27 \int u^{2} d u \\
& =-27 \frac{u^{3}}{3} \\
& =-9 \cos ^{3} \theta
\end{aligned}
$$

Using triangles, we see that

$$
\cos \theta=\frac{\sqrt{9-x^{2}}}{3}
$$

Thus, the final answer is

$$
\int x \sqrt{9-x^{2}} d x=-\frac{9\left(9-x^{2}\right)^{3 / 2}}{27}=-\frac{\left(9-x^{2}\right)^{3 / 2}}{3}
$$

3. (20 points) Evaluate the integral

$$
\int \frac{x^{5}+2}{x^{2}(x+1)} d x
$$

Solution First, dividing $x^{5}+2$ by $x^{3}+x^{2}$ we see that $x^{5}+2=\left(x^{2}-x+1\right)\left(x^{3}+x^{2}\right)-x^{2}+2$. So,

$$
\begin{aligned}
\int \frac{x^{5}+2}{x^{2}(x+1)} d x & =\int \frac{\left(x^{2}-x+1\right)\left(x^{3}+x^{2}\right)-x^{2}+2}{x^{3}+x^{2}} d x \\
& =\int\left(x^{2}-x+1\right) d x-\int \frac{x^{2}-2}{x^{3}+x^{2}} d x \\
& =\frac{x^{3}}{3}-\frac{x^{2}}{2}+x-\int \frac{x^{2}-2}{x^{2}(x+1)} d x .
\end{aligned}
$$

We solve for A, B, and C in the equation

$$
\frac{x^{2}-2}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}
$$

by multiplying across by $x^{2}(x+1)$ to obtain

$$
\begin{aligned}
x^{2}-2 & =A x(x+1)+B(x+1)+C x^{2} \\
& =A x^{2}+A x+B x+B+C x^{2} \\
& =(A+C) x^{2}+(A+B) x+B .
\end{aligned}
$$

Equating coefficients, we see that $B=-2, A=2$, and $C=-1$. Therefore,

$$
\begin{aligned}
\int \frac{x^{2}-2}{x^{2}(x+1)} d x & =\int \frac{2 d x}{x}-\int \frac{2 d x}{x^{2}}-\int \frac{d x}{x+1} \\
& =2 \ln |x|+\frac{2}{x}-\ln |x+1|+C
\end{aligned}
$$

Thus, the final answer is

$$
\int \frac{x^{5}+2}{x^{2}(x+1)} d x=\frac{x^{3}}{3}-\frac{x^{2}}{2}+x-2 \ln |x|-\frac{2}{x}+\ln |x+1|+C .
$$

4. (20 points) Evaluate the integral

$$
\int \sin (\ln x) d x .
$$

Solution There are two ways to do this problem. One, you may simply start with integration by parts with $u=\sin (\ln x)$. Two, you may first substitute. I show the second way here. First, we must substitute $w=\ln x$. Then, $d w=\frac{d x}{x}$, or $d x=x d w=e^{w} d w$. Thus, the integral becomes

$$
\int \sin (\ln x) d x=\int e^{w} \sin (w) d w
$$

Second, we do integration by parts twice both times with $u=e^{w}$ to obtain
$\int e^{w} \sin (w) d w=-e^{w} \cos (w)+\int e^{w} \cos (w) d w=-e^{w} \cos (w)+e^{w} \sin (w)-\int e^{w} \sin (w) d w$
Therefore,

$$
\int \sin (\ln x) d x=\int e^{w} \sin (w) d w=\frac{e^{w}}{2}(\sin (w)-\cos (w))=\frac{x}{2}(\sin (\ln x)-\cos (\ln x))
$$

5. (20 points) Determine whether or not the improper integral

$$
\int_{1}^{2} \frac{d x}{x \ln x}
$$

converges.
Solution We do the substitution $u=\ln x, d u=\frac{d x}{x}$ to obtain

$$
\int_{1}^{2} \frac{d x}{x \ln x}=\int_{0}^{\ln 2} \frac{d u}{u}=\left.\lim _{R \rightarrow 0} \ln u\right|_{R} ^{\ln 2}
$$

which diverges.
6. (20 points) Use the error bound for Taylor polynomials to find a value of n for which

$$
\left|\ln 2-T_{n}(2)\right| \leq 10^{-6},
$$

where T_{n} is the nth Taylor polynomial for $f(x)=\ln x$ with center 1 .

Solution We know that the nth derivative of $\ln x$ is

$$
f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{x^{n}} .
$$

On The interval [1, 2], the function $\left|f^{(n)}(x)\right|$ is decreasing, so we can take $K_{n}=\left|f^{(n)}(1)\right|=$ $(n-1)!$. The error bound then gives,

$$
\left|\ln 2-T_{n}(2)\right| \leq \frac{K_{n+1}(2-1)^{n+1}}{(n+1)!}=\frac{n!}{(n+1)!}=\frac{1}{n+1}
$$

So, we need

$$
\frac{1}{n+1} \leq \frac{1}{1000000}
$$

or $n \geq 999999$.
7. (20 points) Determine whether or not

$$
\sum_{n=1}^{\infty} \frac{5^{\left(n^{2}\right)}}{n!}
$$

converges.
Solution First, note that $5^{n^{2}}=\left(5^{n}\right)^{n}$. Second, note that $n!\leq n^{n}$ for all $n \geq 1$. Therefore,

$$
\sum_{n=1}^{\infty} \frac{5^{\left(n^{2}\right)}}{n!} \geq \sum_{n=1}^{\infty} \frac{5^{\left(n^{2}\right)}}{n^{n}}
$$

If we show the right-hand series diverges, then we will have shown that the left-hand series diverges by the comparison test. The root test gives

$$
L=\lim _{n \rightarrow \infty}\left(\frac{\left(5^{n}\right)^{n}}{n^{n}}\right)^{1 / n}=\lim _{n \rightarrow \infty} \frac{5^{n}}{n}=+\infty
$$

So,

$$
\sum_{n=1}^{\infty} \frac{5^{\left(n^{2}\right)}}{n!}
$$

diverges.
8. (20 points) Find the interval of convergence of the power series

$$
F(x)=\sum_{n=1}^{\infty} \frac{n(2 x)^{2 n}}{5 n+4}
$$

Solution The ratio test produces

$$
\begin{aligned}
\rho(x) & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)(2 x)^{2 n+2}}{5(n+1)+4}}{\frac{n(2 x)^{2 n}}{5 n+4}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(2 x)^{2 n+2}}{(2 x)^{2 n}}\right| \frac{5 n+4}{5 n+9} \frac{n+1}{n} \\
& =(2|x|)^{2}=4|x|^{2} .
\end{aligned}
$$

Therefore, $\rho(x)<1$ when $|x|^{2}<\frac{1}{4}$. That is, when $|x|<\frac{1}{2}$. Thus, the radius of convergence is $R=\frac{1}{2}$. When $x=-\frac{1}{2}$ or $x=\frac{1}{2}$ the limit of the sequence is not zero, so the divergence test says that the series diverges. Thus, the interval of convergence is

$$
\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

9. (20 points) Approximate using Taylor series the integral

$$
S=\int_{0}^{1} \cos \left(x^{3}\right) d x
$$

with an error of at most 10^{-4}.
Solution The Taylor series for $\cos \left(x^{3}\right)$ is

$$
T(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n}}{(2 n)!}
$$

Thus,

$$
\int \cos \left(x^{3}\right) d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+1}}{(6 n+1)(2 n!)}
$$

So,

$$
S=\int_{0}^{1} \cos \left(x^{3}\right) d x=\left.\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+1}}{(6 n+1)(2 n!)}\right)\right|_{0} ^{1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(6 n+1)(2 n!)}
$$

This is an alternating sum, and we know that if

$$
S_{N}=\sum_{n=0}^{N}(-1)^{n} \frac{1}{(6 n+1)(2 n!)}
$$

then

$$
\left|S-S_{N}\right|<\frac{1}{(6(N+1)+1)(2(N+1))!}
$$

So, we need to find N such that

$$
(6 N+7)(2 N+2)!>10000
$$

If $N=1$, we have $(13)(4)!=13 \cdot 24=312$. If $N=2$, we have $(19)(6)!=13680$. So, $N=2$ works. That is,

$$
S_{2}=1-\frac{1}{7 \cdot 2!}+\frac{1}{13 \cdot 4!}
$$

approximates the integral with an error of at most 10^{-4}.
10. (20 points) Find the terms through degree 7 of the Taylor series $T(x)$ centered at $c=0$ of $f(x)=\sin (x) \cos (x)$.

Solution We know that the $T(x)$ is the product of the Taylor series centered at 0 of $\sin (x)$ and $\cos (x)$. That is,

$$
\begin{aligned}
T(x) & =\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}\right)\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}\right) \\
& =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right) \\
& =\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}\right)-\frac{x^{2}}{2!}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}\right)+\frac{x^{4}}{4!}\left(x-\frac{x^{3}}{3!}\right)-\frac{x^{6}}{6!}(x)+\cdots \\
& =x-\left(\frac{1}{3!}+\frac{1}{2!}\right) x^{3}+\left(\frac{1}{5!}+\frac{1}{2!\cdot 3!}+\frac{1}{4!}\right) x^{5}-\left(\frac{1}{7!}+\frac{1}{2!\cdot 5!}+\frac{1}{3!\cdot 4!}+\frac{1}{6!}\right) x^{7}+\cdots
\end{aligned}
$$

